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It is shown that in the quantum structural approach to high-
T superconductivity, the wave function in terms of the alter-

nate molecular bonding geminals possesses off-diagonal long-
range order (ODLRO).
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Introduction

Recently, Chiu proposed a quantum structural ap-

where

¢n,n+l(1’2) = l

In Eq. (2), 1 and 2 on the left side stand for the spin-
orbital coordinates of the first and second particles, x;
and x; for their orbital coordinates, and a and B for spin
up and spin down, respectively. The vibrational pseudo-

<¢A(1’2)XI(Q-A)

JH
aQ_AQ—A

proach to high-T, superconductivity,!'? in which some
possible thoughts of quantum chemical structures are
compared and mixed with the physical treatments of

high-T'; superconductors. In the approach the molecular
bonding geminal (MBG) ¢ is expressed as Bloch sum
of the bonding geminals (BG) ¢, ,, . such that'

N1
0,(1,2) = ﬁzei2mn/lv¢n,n+1(l,2) (1)
n=0

1

J‘2[¢n(xl)¢n+l(x2) + ¢n(x2)¢n+l(xl)] xﬁ[alﬁZ - ,8102] (2)

angular momentum A can take the values of 0, + 1,--+,
+ (‘]2\‘[ - 1),"—2V (for even N). In temms of ¢, in Eq.
(1), the vibronic geminal is given by

$0(1,2) x°(Q.4))

¢(1,2) = ¢(1,2) +

where y° and x' represent respectively zero and one vi-
brational quantum number of the eigenfunctions, and the
vibrational mode @ is taken to be the linear combina-
tion of g, n41=Cna1 - & (&, is the local atom n’s
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x 94(1,2) ' (Q.4) (3)

movement) , similar to the linear combination of bonding
geminals in Eq. (1). By means of the vibronic geminal
the completely antisymmetrized wave function of M elec-
tron/hole pairs is written as
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W(123--2M) = App(1,2)¢(3,4)-¢(2M - 1,2M) (4)

where A,y is the nomnalized antisymmetrizer. As a spe-
cial and important case, the wave function for the half-
filled system with M = N/2 electron/hole pairs was
considered.'*? It is noted that in the quantum structural

approach electrons/holes are described by geminals,
and the Jahn-Teller and Renner-Teller perturbations®~3
for degenerate states ¢4 and ¢_, based on the
Herzberg-Teller expansion are much more emphasized.

2

In the application of the quantum structural ap-
proach to high-T', superconductivity, the important case
of alternating double O~ holes - , with
[] standing for quadruple unit composed of CuOQ; cells,
was considered to be comparable with that of the conju-
gate carbon chain with alternating conjugate m-electron

%(112) = «/_

#(1,2) = iwlu,z) - ¢ (1,2)] =

7

It has been shown that the antisymmetric vibration

+ (J; would be in energy lower one of ¢/f, J{ and raise
the other simultaneously. + Q,, the positive vibration
(«C C—><C C—><C), favors and lowers the bond
energy of C—C=C—C=C, while - Q,, the nega-
tive vibration (C—=><—C C—<C C—), favors and low-
ers the bond energy of C—C—C=—C—C. This can
result in a double-well potential with two resonant mini-
ma and a potential barrier between them, which is simi-
lar to the Jahn-Teller effect.?~% As is suggested,! the
double-well potential barrier may relate to the energy
gap for the superconducting double-electron pairs
C=C—C=C—C which can be mised and disinte-

i2[¢1(1,2) +¢_,(1,2)] =

bonding -+ CG=C—C—=C—C -+ (for the detailed
comparison, see Ref. 1). As a simplest illustration,
the C4H, case C(0)—C(1)—C(2)—C(3)—C(4)
with cyclic boundary condition C(4) = C(0) was dis-
cussed. The corresponding alterate MBGs ( ¢f and ¢%)

were expressed as'

%2[%,1(1,"2) - 025(1,2)] (6)
Jl_z[go,,z(l,z) - 230(1,2)] (7)

grated into C -~ C =~ C = C+ C. In the 1976 paper of
Chiu and Wang,® the similar barrier for pair-wise charge
transfer from (—C—C to C—C=C was estimated
to be E,=0.20 x 10" erg~145°k, which seems to be
comparable to the current high- T, number.

However, we may inquire whether the altermnate
MBG can really exhibit the superconducting behavior.
For this purpose, an attempt is made in this paper to
demonstrate the superconducting property of the general
alternate MBGs (74 and ¢4 (with A = N/4 for N =
4N’ units, N’ is integer), which, generalized from A

and ¢f, can be written as

4,
Pa(12) = E LD + 912 =3[ 2 3 bapr20n(1,2) (8)

¥y
¢7V/4(1v2) = i_«l/—z[‘ﬁzm(l’z) - ¢'-N/4(1’2)] =«/%§52n+1¢2n+1,2n+2(1’2) (9)
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where

5211 = E2n+1 = (_ l)n (10)

As is well known, Yang showed that the off-diagonal
long-range order (ODLRO) is an essential characteristic

of superconductivity.” Therefore we will investigate the
property of the second-order reduced density matrices of
the completely antisymmetrized wave functions ¥}, and

W4 with respect to ¢y, and ¢}, given by

Wia(123-2M) = Apds(1,2) ¢34 (3,4) - o5, (2M - 1,2M) (11)

and

Vhu(123-2M) = A u(1,2) @10 (3,4) - g4, (2M - 1,2M) (12)

In Sec. II it is shown that the second-order reduced
density matrices of Wy, and ¥}/, possess the largest
eigenvalue for a system which has 2V states with 2M
fermions, indicating that ¥, and ¥}, possess ODL-
RO.” In Sec. I we make further discussions on the
wave functions ¥’ in Eq. (32) and ¥” in Eq. (36)
in order to reveal the corresponding damages to the
largest eigenvalue.

ODLRO of Wi/4 and W}, with respect to the alternate
MBGs

At first it is noticed that the alternate MBGs of spin
singlet are different from the Cooper-pairing®

T = 2ab (13)

and the on-site as well as the extended 7 pairings of
Yang,®

7= e ab, (14)

Na = Ee—i’r'rarq-abr (15)

where a, and b, are coordinate-space annihilation opera-
tors for spin-up and spin-down electrons/holes, respec-
tively, and the subscrips 7 + @ and r in Eq. (15) de-
note an extended pairing at a distance of a. The differ-
ences are made clear when the altemate MBGs are writ-
ten in the second quantization formalisms

‘/’7‘//4 = Ecos(%r)(arbr+l - brar+1)

(/),yv/4=Esin(%r)(a,b,u—b,a,n) (16)

where r stands for n.

Now let us consider the wave function ¥,
(W}4 can be discussed similarly) . In the following, let
®,, and @5 represent @,a and @B, 7; with [ =1,2

stand for @ and 3, respectively. Then it is obvious from
Eq. (2) that the bonding geminal ¢, ,, , of spin singlet

can be written in the form

1
¢n,n+1(1’2) = J——2[¢$.1,)n+1(1’2) - nglz’),Hl(l,Z)]
(17)

where

SDSlly)n+l(1’2)
= é[¢m(1)¢(n+l)ﬂ(2) = 2 (2) P(nanyp(D)]
(18)

905;2,)n+1 ( 1 ’ 2)

= %i[sp"ﬂ(l)go(rwl)a(z') - ¢"ﬁ(2)¢(n+l)a(1)]
(19)

Thus the alternate MBGs ¢, and ¢, in Egs. (8)
and (9) can be rewritten as
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¥,
. [13
¢na(1,2) = erzn[qoéi),zm(l&) - 5053:),2n+1(1’2)] (20)
n=0
and
s
¢1yV/4(1:2) = ﬁz_geznu[?gﬂl,zwz(l’z) - Svgi)»,x,zwz(l’z)] (21)

Substituting Eq. (20) to Eq. (11) the antisymmetrized  Slater determinants such that
wave function ¥4 can be expanded by the normalized

Vh4(123--2M) = [Wh—)—!}-%%wx(lzsmm) (22)
where
‘I'?,K(123"'2M) = [m 11;[ 52; - 1) ][¢’5:° )2» +1§0§f )2; +1 §0§z";‘,',)2iu+1] (23)
In Eq. (22), I1=1{(2i1,2i1+1),(2i3,2 + 1)+, =+, kp, ", by} with k, =1 or 2 The nonna]jzed
(2ip,2im+1),*,(2iy,2iy + 1)} that denotes a se-  Slater determinant [gog‘ )21 1 szl 21 o ¢2‘ 2; "

ries of M different BG locations, K stands for { %, k,, in Eq. (23) is defined by

@M
1
[Spézk )21 +1¢2L 2; +1 SD;Z;’,)ziMu] = 27 (200) Z UP0{¢21 ,2i, a1, 2)90(k )2; «(3,4)

'ul

“'SDg::',)ZiMH(ZM - 1,2M)} (24)

where 0, is the parity factor of the permutation operator order reduced density matrix p, of ¥}, can be written
P,. By means of the conventional method the second- in the form

p,(1,251',2)

2M(2M - I)J‘P“fv/4(123---2M)‘I""N’}4(1’2'3---2M)d(3---2M)

E ¢l7'l (1 2)?;7 Jy (1, 2 )Plljm P (25)

i, Vs/ .m0l ,m

where P is the matrix representation of p, and where
B . (1,2) = é[¢iyl(l)§0,7m(2) - 6y (D gy, (1] (26)

Substituting Eq. (22) into Eq. (25) we can obtain
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£,(1,2;1',2")

ik,

E 5021 21-1-1(:l 2)¢(k )2t +1

(1,2 )21 ML/ (2MCH) U oy, 2y

+ Z Purir (L2 @iy iy (1, 2)2%41 CH3/(2MCH) i, i

i<j,l,m

* y oy 2M(N - M)
= > 902; P (1,2) @88 50 1 (1,2) ( Ugik,iw
ik, ¥, N(N )
y oy 2M(M - 1}
+ ;<JZI)m¢ﬂ JY, (1 2)¢z7 I, (1 2 ) N(N ) zl]m,iljm (27)

where E is the unit matrix and Uy, (2i)4 takes the
form of

U(2i)k,(2i’)k’ = 52,52,"(— 1>k+k’ (28)

By comparison of Eq. (27) with Eq. (25) it is easy to
give

2M(M -1

)
NN-1) E+

P 2M(N-M)(U 0)

N(N-1) \0 o
(29)

where the matrix elements of U is defined by Eq.
(28). Now it can be easily seen from Eq. (28) that the
altenate MBG ¢y, in Eq. (20) is the eigenfunction of
U with the eigenvalue of N. As a direct result of Egs.
(25) and (29), the alternate MBG ¢4 is shown to be
the eigenfunction of p,, i.e.,

Jor1. 251 2) (v 2 )ar @2

= Aadiu(1,2) (30)
where
2M(M -1) 2M(N - M)
ME=TNvCD YNV N
=2M(N - M + 1)/N (31)

At this point we notice that A, is just the largest eigen-
value of p, for a system which possesses 2N states with
2M fermions, given by Yang.” In the case of the half-
filled (M = N/2) system, A, reaches to N/2 + 1.
Moreover, it can be shown similarly that the altemate
MBG ¢}, in Eq. (9) is the eigenfunction of the corre-
sponding second-order reduced density matrix of the
wave function ¥}, in Eq. (12), with the same largest

eigenvalue A,.

As is known, the wave function with the largest
eigenvalue of the second-order reduced density matrix
does have ODLRO.” Thus it is shown that ¥, and
W4 with respect to ¢4 and ¢4 have ODLRO, indi-
cating that the alternate MBGs ¢y, and ¢}, as shown
in Fig. 1 possess the superconducting property.

Pnsa
<= 1= =] =]
Psa
Fig. 1 Hlustration of the alternate MBGs ¢4 and 4.

Discussion on the breakage to the largest eigenvalue of
£2

As noted, the resonant altenate MBGs ¢%/4 and
¢l/4 can transit to each other via the antisymmetric vi-
bration.! The result is a double-well potential, which is
considered to be related to the superconducting gap.!*?
Here we notice that there exists a transition condition:
when the electrons appear in the state i/, the state
¢4 could not be occupied. Otherwise the correspond-
ing transition would be banned; and the largest eigen-
value of p, as well as the double-well potential would be
damaged to some extent. Now consider the simplest case
of such damage with the wave function

P (123-2M) = Apydiu(1,2) $Fa(3,4) -
(M = 3,2M - 2) %, (2M - 1,2M) (32)

which is supposed to contain a different pair of ¢}, . In
this case the second-order reduced density matrix p," for

V' is defined by
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p, (1,2;1',2') = 2M(2M - 1)[?’(123---2M)W’*(1'2'3---2M)d(3---2M) (33)

Similar to the demonstration of Eq. (30), the altemate eigenfunction of p," with a larger, but not the largest,
MBG ¢fy4 can be shown (see appendix) to be the  eigenvalue A,’, i.e.,

Jor (L2312 (v 2)ar @ = 3/63,(1,2) (34)
where
, _2M-D(N-M-1) 2M-1)
Here A, is the largest eigenvalue given by Eq. (31). Then we can discuss similarly the wave function
with a different electron/hole pair of spin triplet,
V'(123:2M) = Apghna(1,2) ¢34 (3,4) $5a(2M - 3,2M - 2)° 9%, (2M - 1,2M) (36)
where
4y
2 2
3()b;:\//4(1 ’2) = A/ W z 8211 3q027|,2n+1(1’2) (37)
n=0
with
3¢n,n+1(1’2) = A/%[(Pfll,)rwl(l’z) + ¢S&%)n+l(1’2)] (38)

Notice that gof,l,)“l and qof,z,)n +1 are defined by Eqgs. der reduced density matrix p,” is expressed as
(18) and (19), respectively. For ¥", the second-or-

e (1,2;1,2) = 2M(2M - 1)]?’”(123---2M)‘I’”" (1'23--2M)d(3--2M) (39)

It can be shown easily (see appendix) that the altemate ~ MBG ¢, is now the eigenfunction of p,” with

[ (L2sv 2)ghu(r 2)av @ = a29ha(1,2) (40)

where
A=A =4, -2 (41) As expected, due to the existence of a different pair of
@hsa o Y4 the larger eigenvalues A,’, A,” with re-
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spect to p,’, p," are lowered by 2 against the largest Appendix
eigenvalue A,.

For W' defined by Eq. (32), the second-order
reduced density matrix p,’ can be expanded as follows

ey (1,2;1,2') = 2M(2M - 1)[\1/’(123---2M)\1/*(1'2'3---2M)d(3---2M)

k K)o« ' '
= _"Zy¢§i,)2i+l(1’2)§0§i',)2i’+1(1 2 ) Paik, @iow

k k! * ’
+ .;,ﬂogizl,znz(lﬂ) ¢§i’31,2i’+2(11 ’2')P(2i+1)k,(2i’+l)k’

+ E Pir iy (1,2)go;‘7’,f7 (1,2 )P g, viym (A1)
v=j -tz m m

isi,i<y,l,m;i =i,i+2; yJ
(f-ms#(_iﬂ,lgl,),(f.M)#ii’ﬂ,ltl)

To facilitate our discussion we define a 2 x 2 coefficient matrix P’y; 5; by

, , Potaen  Pai,or
Pyize = [(Papk,iw)] = ( ,(2 e ,(2 e )2) (A.2)
Paiyn,in P, i
Substituting Eq. (32) into Eq. (A.1) we can obtain
P2 ( (N -2)Ch3 —(N—4)C%:%) (A.3)
AT ONCHA\ (N - ML (N -2)c3 '
, , 20%:%( (N -3) -(N—4))
. a = g - — A.4
Pyiagivty = Paiai-) NI\ - (W - ) (N - 3) (A.4)
and for i'#£i,i+1,
, 2N -4)0%:%( 1 - 1)
cew = (= i+ 2T~ T/ N4 .
P21,21 ( 1) Nc%:a -1 1 (A 5)

Making use of the above expressions for Plgm,-' and the show that
cyclic boundary condition of crystals, we can easily

[or (251 2)gu(r 2)ar @

-3

= yqog‘,)z,-ﬂ(lﬂ) 50555,,)2¥'+1(1, ’2,)P, (2i)k,(2i’)k’¢7V/4(ll ’21)d1,d2, = A2,¢7V/4(1’2) (A6)
where
2
NCYS
2IM-1)(N-M-1) 2M-1)
N TN

A, = [(N -2)CN3 + 2(N - 3)Ch% + (N - 3)(N - 4) Ci7}

=2 -2 (A.7)
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where A, is the largest eigenvalue given by Eq. (31). duced density matrix p,” can be expressed as
For ¥ given by Eq. (36), the second-order re-

p(1,2;1,2) = 2M(2M - 1)[\?'(123---2M)11r"*(1'2'3---2M)d(3---2M)

= Eﬁgf,)zm(l ,2) @5 5 1 (1, 2) P iy oy

ivk,i,
20 0y (LD ehy (1,2) Pl g (A.8)

isj,l,m
(fym)9(i+1,1x1)

Defined similarly as Pj; 5 by Eq. (A.2), the 2 x 2 P"(2i)k, 2"k can be obtained as
coefficient matrix P;i,gy with the matrix elements

o 2N—2( Ch3 —C‘z"v:%)+;(1 1) (A.9)
BETONCNE \- 3 43/t N '
and for i'#1i,
2(1v_4)c%:%( 1 _1) 20’,‘{,:5(1 1)
" . Y = — i+ 2 2 7 TiN=a — i+ 07 .
Ppr = (=1) R WY AR 1?‘ NI\ (A.10)

Using Eqs. (A.9) and (A.10) it is easy to prove

f‘02"(1’2;1' ,2) gha(l,2)dl'd2 = J Z 9055‘,)2“1(1’2) 905,(5’,)2:41(1' 22 ) Plaiye, iy a1 ,2)dl’ &2
kK

ik,
= A Pna(1,2) (A.11)
where
Af = 2 [(N - 2) U3+ (N = 2)(N - 3) 2]
NCYZ3
=2(M—1)(JJVV—M—1)+2(MN—1)=A2_2 (A.12)
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